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Abstract: A recent cyclic test program evaluated the performance of steel wide-flange columns under axial loads and lateral drifts; the
specimens had either fixed-fixed or fixed-rotating boundary conditions. For both cases, the flexibility of fully restrained moment connections
at specimen ends, which varied in degrees based on several factors such as configurations of the bolted connection, end-plate thickness, and
magnitude of the applied axial load, was observed to have significant impacts on elastic flexural stiffnesses of the measured responses.
Therefore, the measured responses needed to be corrected, accounting for the effects of connection flexibility, before test parameters of
interest can be investigated. A data-correction procedure that eliminates the effect of connection flexibility from the measured beam-column
responses is developed. The procedure is built upon theoretical knowledge of elastic Timoshenko beam-column behavior. Once the effect of
connection flexibility is removed, the corrected test responses become equivalent to the responses of beam-columns with ideal rigid end
connections. DOI: 10.1061/(ASCE)ST.1943-541X.0002533. © 2019 American Society of Civil Engineers.
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Introduction

Steel special moment frames (SMFs) are one of the most com-
monly used lateral force–resisting systems in high seismic regions
due to their high energy-dissipation capacity and architectural ver-
satility. To achieve ductility in the seismic response of a multistory
SMF, design requirements in AISC 341 (AISC 2016b) and AISC
358 (AISC 2016a) intend to provide significant inelastic deforma-
tion capacity through flexural yielding in the beams and limited
shear yielding of column panel zones. Although strong column-
weak beam design requirements are also provided, flexural yielding
or plastic hinging at the base of the first-story columns is unavoid-
able and permitted by AISC 341.

Design engineers sometimes refer to wide-flange columns with
nominal depths greater than 356 mm (14 in.) as deep columns and
those with lower nominal depths as shallow columns. Deep wide-
flange columns (e.g., W24–W36) are preferred in the designs of
SMF, especially after the 1994 Northridge Earthquake, to achieve
economy while attaining a high lateral stiffness required to satisfy
story drift limits of the building codes (ASCE 2016). Despite this
popularity in the designs, limited research has been conducted to
study cyclic inelastic behavior of deep columns under both the axial
and flexural demands for seismic applications. To fill this knowl-
edge gap, NIST (2011) initiated a comprehensive research program
to evaluate the usage of deep columns in SMFs and its effects on the

seismic response at the member, beam-column subassembly, and
system levels.

In the designs of braced frames, shallow wide-flange columns
are commonly used. Newell and Uang (2008) tested shallow (W14)
columns under varying axial load and cyclic story drifts and re-
ported excellent member ductility capacity even when the axial
load was high (up to 70% of the member yield strength). Because
deep columns usually have much larger section slenderness param-
eters (i.e., width-to-thickness ratios h=tw and bf=2tf, where h is
web depth, tw is web thickness, bf is flange width, and tf is flange
thickness) for web local buckling (WLB) and flange local buckling
(FLB) limit states as well as a larger member slenderness parameter
(i.e., L=ry, where L is member length, and ry is radius of gyration
about the weak axis) for lateral-torsional buckling and flexural
buckling limit states, it is not clear if the same conclusion on shal-
low column behavior can be generalized to deep columns. As part
of the NIST research program, full-scale steel wide-flange (W18 to
W30 shapes) columns were tested with axial forces and cyclic lat-
eral drifts to evaluate their hysteretic responses and buckling behav-
iors for seismic applications (Ozkula and Uang 2017; Chansuk
et al. 2018).

In this test program, the specimens had either fixed-fixed or
fixed-rotating boundary conditions. For both cases, it was observed
that the measured beam-column responses, especially in the elastic
range, were sensitive to flexibility of the fully restrained moment
connections that fixed the specimen ends. Correspondingly, this
connection flexibility became another unintended variable that in-
fluenced the test responses, hindering investigation of parameters
of interest in this research. Thus, a data-correction procedure is
needed to eliminate the effect of connection flexibility from the
measured beam-column responses and enable meaningful response
investigations.

The first part of this paper briefly discusses the test program,
sample test results, and the challenges in analyzing test data that
arise from the effects of connection flexibility. Subsequently,
a data-correction procedure is proposed to overcome the chal-
lenges. A literature review of classical beam-column theories then
follows to present available closed-form formulas for determining
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theoretical elastic flexural stiffnesses of beam-columns with rigid
end connections. Application of the theoretical formulas to cor-
rect test responses of beam-column specimens with fixed-fixed
boundary conditions is presented next. For specimens tested with
fixed-rotating boundary conditions, flexibility of end moment
connections does not only affect the member stiffnesses but also
change their internal force distribution. Due to this complexity,
close-formed formulas that express the behavior of Timoshenko
beam-columns with flexible end connections are required to exam-
ine the specimen responses. These expressions, which are not avail-
able in literatures, are derived in this paper in a classical manner and
applied to the data-correction procedure for fixed-rotating tests.

NIST Test Program

Parameters Investigated

Columns tested in this research were intended to represent the first-
story columns in a multistory SMF. Table 1 presents the test matrix;
the numbers preceding the specimen labels indicate specimen
groups. In the first phase of this test program, Ozkula and Uang
(2015, 2017) tested five W24 shapes (Groups 1–5) of ASTM
A992 steel for a total of 14 specimens to investigate the effects
of section and member slenderness parameters on the strong-axis
flexural responses and buckling behaviors. The applied axial force
was kept constant in each test to simulate the response of an interior
column. To study the effects of axial load levels on the failure
mode, column ductility capacity, and axial shortening, each speci-
men group, with a few exceptions, consisted of three specimens of
the same shape undergoing low (0.18Py), medium (0.36Py), and
high (0.54Py) levels of axial compression, where Py = nominal

yield strength of column; letters L, M, and H indicate these
axial load levels, respectively, in the specimen labels. Fully re-
strained moment connections were used at both ends of the spec-
imens; the intent was to simulate fixed-fixed boundary conditions.
Although most specimens underwent strong-axis cyclic bending,
some specimens such as Specimen 6L were subjected to weak-axis
cyclic bending to investigate the effects of bending direction.

Chansuk et al. (2018) tested 11 additional wide-flange shapes
(Groups 11–27) ranging from W14–W30 for a total of 13 speci-
mens with strong-axis bending in the second phase of the test pro-
gram. The objectives were to (1) further examine the parameters
investigated in the first phase of testing, (2) determine whether
findings from testing of W24 specimens in the first phase could
be extrapolated to deeper (e.g., W30) and shallower (e.g., W14
and W18) shapes with similar section slenderness parameters,
and (3) expand the experimental database. In addition, the effects
of boundary conditions were investigated; a fixed-rotating loading
protocol (discussed in a subsequent section) was imposed to some
specimens (Table 2). Other parameters such as biaxial bending, lat-
eral drift loading sequences, and varying axial loads were also stud-
ied in this test program but are outside the scope of this paper.

Test Setup

Testing was conducted in the Seismic Response Modification
Device (SRMD) Test Facility at the University of California,
San Diego, with the test setup as shown in Fig. 1. Specimens were
tested in a horizontal position; L indicates their clear lengths
(Tables 1 and 2). The west end of the specimens was connected
to a reaction fixture that was fixed to a strong wall. The east or
moving end was connected to a reaction fixture that was tied down
to the SRMD moving platen, simulating a column top end that

Table 1. Test specimens with fixed-fixed boundary conditions

Specimen
No. Shape

L
(m)

P
(kN)

μ
(×10−3)

Ke
(kN=mm)

Kme
(kN=mm) β Kθ (GN · m=rad)

Stiffness
reductiona (%)

1L W24 × 176 5.49 2,064 2.46 27.62 19.97 13.00 1.21 27.7
1M W24 × 176 5.49 4,132 4.93 27.19 21.65 19.75 1.70 20.4
1H W24 × 176 5.49 6,205 7.40 26.76 21.90 22.84 1.97 18.2
2L W24 × 131 5.49 1,544 2.28 19.99 14.27 12.72 0.78 28.6
2M W24 × 131 5.49 3,100 4.57 19.67 16.17 23.94 1.46 17.8
2H W24 × 131 5.49 4,617 6.81 19.35 15.35 19.92 1.21 20.7
3L W24 × 104 5.49 1,214 2.17 15.59 12.60 21.78 1.02 19.2
3M W24 × 104 5.49 2,438 4.35 15.33 13.01 29.32 1.38 15.2
3H W24 × 104 5.49 3,661 6.53 15.08 12.78 29.31 1.38 15.3
4L W24 × 84 5.49 974 1.85 12.26 10.59 33.44 1.20 13.7
4M W24 × 84 5.49 1,971 3.75 12.05 10.76 44.59 1.60 10.8
5L W24 × 55 5.49 636 1.44 7.28 6.63 56.36 1.15 8.9
5LM W24 × 55 5.49 979 2.21 7.21 6.75 85.17 1.74 6.4
5M W24 × 55 5.49 1,130 2.55 7.17 6.83 82.88 1.70 4.7
11M W24 × 176 5.33 4,097 4.89 29.33 23.11 18.43 1.63 21.2
12LM W30 × 261 5.33 4,613 3.53 62.80 42.69 9.61 1.96 32.0
13M W30 × 173 5.33 4,066 4.43 40.35 31.03 15.71 2.02 23.1
14L W30 × 90 5.38 1,054 1.60 19.20 16.93 37.71 2.10 11.9
15L W18 × 192 5.38 2,246 2.79 20.76 17.00 23.75 1.42 18.1
16M W18 × 130 5.38 3,043 5.42 13.02 11.19 33.20 1.26 14.0
17L W18 × 76 5.38 876 2.47 7.35 6.87 78.66 1.62 6.5
22L W30 × 148 5.49 1,730 1.89 32.16 25.16 17.63 1.79 21.8
23L W18 × 60 4.27 689 1.99 10.76 9.78 52.34 1.00 9.1
24L W14 × 82 4.27 947 2.97 9.58 8.21 32.14 0.55 14.2
25L W14 × 53 4.27 609 2.64 6.00 5.61 79.69 0.84 6.4
26LM W14 × 132 4.27 2,313 5.72 15.67 13.43 30.81 0.92 14.3
27L W24 × 84 5.49 974 1.85 12.26 10.69 35.90 1.29 12.9
aStiffness reduction = ðKe − KmeÞ=Ke.
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swayed (and rotated for the fixed-rotating loading case) during a
seismic event.

To achieve fully restrained moment connections at both ends,
bolted end-plate connections [ASTMA572 Grade 50 (ASTM 2018)]
were used in this test program (Fig. 2). They were fastened to the
reaction fixtures with 38-mm diameter high-strength pretensioned
threaded rods [ASTMA354 Grade BD (ASTM 2017)]. Table 3 sum-
marizes the connection details for each specimen group, including
the dimensions of the end plate and the number of bolts at each end.

With this test setup, longitudinal movements of the platen,
which were force-controlled, imposed a targeted axial force, P,
to the specimen. Applied (i.e., measured) cyclic lateral displace-
ment, Δm, of the platen in the horizontal plane imposed double-
curvature strong-axis bending to the specimens. Cyclic rotations,
θm, of the platen about the member strong axis simulated top end
rotation of the first-story columns in a SMF. The platen was in a
displacement-control mode for the lateral and strong-axis rotational
movements.

Testing Procedure and Loading Protocols

Figs. 3(a) and 4(a) show the ideal fixed-fixed and fixed-rotating
boundary conditions intended in testing of the specimens listed in
Tables 1 and 2, respectively. An axial force was applied first in
these tests and maintained at a targeted magnitude throughout
the cyclic loading. For fixed-fixed tests, only cyclic lateral drifts
were imposed at the moving end of the specimen, i.e., the top
end of the first-story column in a moment frame in perspective.
Typical in this test program, the symmetrical cyclic lateral drift
loading protocol for qualifying cyclic tests of beam-to-column mo-
ment connections in special and intermediate moment frames speci-
fied in Section K2.4b of AISC 341 (AISC 2016b) was used.
Fig. 5(a) shows the sequence of this AISC loading protocol in term
of story drift angle, Δm=L.

For specimens tested with the fixed-rotating boundary
conditions, cyclic end rotations [Fig. 5(b)] in-phase with and
proportional to the AISC lateral drift sequence [Fig. 5(a)] were
also applied to the moving end of the column specimens. For
this test program, the applied end rotations were expressed as
follows:

θm ¼ ξm

�
Δm

L

�
ð1Þ

A three-bay, 4-story SMF designed by Harris and Speicher
(2015) was analyzed to determine an appropriate ξm value for
this test program. Based on nonlinear time-history analyses of
this structure with 14 ground motions, scaled to match the Design
Earthquake per ASCE 7 (ASCE 2016), the top end rotations and the
first-story drift angles were similar in magnitude. Values of ξm used
in this test program are summarized in Table 2; ξm was initially
set to 1 for all fixed-rotating specimens but due to human error,
Specimen 11H-BC with W24 × 176 shape was tested with a
slightly larger ξm value of 1.12.

Fig. 1. Test setup.

Fig. 2. Typical moment connection at specimen ends: (a) end connection details; and (b) end plate detail.

Table 2. Test specimens with fixed-rotating boundary conditions

Specimen
No. Shape

L
(m) ξm

P
(kN)

μ
(×10−3) β Kθ (GN · m/rad)

xIP
(mm) ξ

Ke
(kN=mm)

Kme
(kN=mm)

Stiffness
reductiona (%)

11H-BC W24 × 176 5.33 1.12 6,196 7.40 23.49 2.08 1,104 1.17 11.27 9.75 13.4
13M-BC W30 × 173 5.33 1.00 4,066 4.43 17.20 2.21 1,343 1.06 18.54 15.49 16.4
16M-BC W18 × 130 5.38 1.00 3,060 5.45 33.56 1.28 1,565 1.04 5.94 5.32 10.5
aStiffness reduction ¼ ðKe − KmeÞ=Ke.

© ASCE 04019230-3 J. Struct. Eng.

 J. Struct. Eng., 2020, 146(3): 04019230 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

"U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

" 
on

 1
2/

31
/1

9.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Typical Beam-Column Responses

Hysteresis of the specimens is greatly influenced by beam-column
yielding and buckling behaviors, which are characterized into three
main modes defined by Ozkula et al. (2017): (1) symmetric flange
local buckling mode, (2) antisymmetric local buckling mode, and
(3) coupled buckling mode. The first mode is usually observed in
stocky shallow (W14) columns, whereas the latter two modes are
typical in deep column testing.

Figs. 6(a and b) show the antisymmetric local buckling mode and
the associated lateral force-story drift response of Specimen 13M
subjected to strong-axis bending with the fixed-fixed boundary
conditions. FLB and WLB initiated simultaneously at 0.01 rad story
drift angle, forming in-plane plastic hinges at both ends of the speci-
men. As a result, column axial shortening grew significantly, and
the member flexural strength degraded drastically. The ductility
capacity associated with this failure mode was sensitive to the axial
force level.

Fig. 7(a) shows the deformed configuration of Specimen 11H-BC
with the fixed-rotating boundary conditions; it involved both local
buckling and lateral-torsional buckling, characterizing the coupled
buckling mode. Inelastic deformation was limited at the moving
end because the applied cyclic rotations reduced the moment there.

Subjected to weak-axis bending and having fixed-fixed boun-
dary conditions, Specimen 6L with W24 × 131 shape exhibited ex-
cellent ductility; local buckling was not observed even at 0.07 rad
story drift angle as shown in Fig. 8(a). Because neither local buck-
ling nor lateral-torsional buckling occurred, column axial shorten-
ing and flexural strength degradation were not observed; the slight
decrease in lateral strength at large drifts shown in Fig. 8(b) was
due to the second-order effect from the applied axial compression.

Effects of Connection Flexibility and Challenges

The use of bolted end-plate connections to fix the specimens to
reaction fixtures did not constitute ideal rigid boundary conditions.

Table 3. Connection schedule

Specimen
group Shape

a
(mm)

b
(mm)

t
(mm)

No. of
bolts

1 W24 × 176 1,372 432 64 14
2 W24 × 131 1,372 432 64 14
3 W24 × 104 1,372 432 64 14
4 W24 × 84 1,372 432 64 14
5 W24 × 55 1,372 432 64 14
11 W24 × 176 1,029 572 76 24
12 W30 × 261 1,029 572 76 28
13 W30 × 173 1,029 572 76 28
14 W30 × 90 1,029 572 51 28
15 W18 × 192 724 572 51 20
16 W18 × 130 724 572 51 20
17 W18 × 76 724 572 51 20
22 W30 × 148 1,029 572 76 28
23 W18 × 60 724 572 51 20
24 W14 × 82 724 572 76 16
25 W14 × 53 724 572 76 16
26 W14 × 132 724 572 76 16
27 W24 × 84 1,029 572 51 24

Fig. 3. Fixed-fixed beam-column with axial load and lateral drift:
(a) ideal boundary conditions; and (b) actual boundary conditions.

Fig. 4. Fixed-rotating beam-column with axial load, lateral drift,
and top-end rotation: (a) ideal boundary conditions; and (b) actual
boundary conditions.

Fig. 5. Loading protocols: (a) AISC lateral story drift angle sequence;
and (b) top end rotation sequence with ξm ¼ 1.
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Due to out-of-plane flexibility of the end plates and elongation of
the fastening rods, some relative rotations between the specimen
ends and the reaction fixtures, i.e., connection rotations, were ob-
served during the cyclic testing. Although Fig. 3(a) was the targeted
fixed-fixed boundary conditions, end connection flexibility caused
rigid-body rotation of the specimens as shown in Fig. 3(b). Because
the measured column lateral drift, Δm, included a drift component
contributed from the rigid-body movement due to the connection
flexibility, the measured elastic lateral stiffness, Kme, obtained from
linear regression of the elastic portion of the lateral force-story drift
response could be significantly lower than a theoretical prediction,
Ke, considering ideal rigid boundary conditions as shown in
Fig. 3(a). Taking Specimen 13M for example,Kme is 23.1% smaller
than Ke, as shown in Fig. 6(b).

For specimens with the fixed-rotating boundary conditions, not
only the imposed lateral drifts but also the imposed end rotations
included a component contributed from connection rotations
[Fig. 4(b)]. Again, this caused the measured elastic responses to
deviate from theoretical elastic responses of a beam-column with
rigid end connections [Fig. 4(a)]. For Specimen 11H-BC, Kme is
13.4% smaller than Ke, as shown in Fig. 7(b).

For specimens subjected to weak-axis bending, connection
rotations were negligible because the member weak-axis flexural
stiffness was small in magnitudes relative to the rotational stiffness
of the end connections. As a result, Kme and Ke of Specimen 6L are

Fig. 6. Specimen 13M (W30 × 173) with strong-axis bending: (a) antisymmetric local buckling mode at west end; and (b) global response.

Fig. 7. Specimen 11H-BC (W24 × 176) with strong-axis bending:
(a) coupled buckling mode; and (b) global response.

Fig. 8. Specimen 6L (W24 × 131) with weak-axis bending: (a) yielding at west end; and (b) global response.

© ASCE 04019230-5 J. Struct. Eng.
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comparable, as shown in Fig. 8(b). Thus, this paper focuses on the
effect of connection flexibility on beam-column tests with strong-
axis bending. A procedure that removes the deformation compo-
nent due to connection flexibility from the measured test responses
is presented in the next section.

Proposed Data-Correction Procedure

Considering the flexibility of the end moment connections that
causes rigid-body rotation of the specimens, the imposed (or mea-
sured) lateral drift at the moving end of the specimens, Δm, can be
expressed

Δm ¼ Δme þΔmc þΔmp ð2Þ
where Δme and Δmp = elastic and plastic components of the mea-
sured lateral drift due to column straining, respectively; and Δmc =
component resulting from rigid-body rotation of the column due to
connection flexibility at member ends. Removing Δmc from Δm
gives the corrected story drift corresponding to ideal boundary
conditions. Because it is difficult to measure Δmc experimentally
due to the complex out-of-plane deformation of the end plates, this
component was removed using the following procedure.

Assuming that Δmc remains elastic, Δme þΔmc collectively
represent the elastic component of Δm. Accordingly, the plastic
component of Δm can be extracted as follows:

Δmp ¼ Δm − V
Kme

ð3Þ

where V = measured column shear (i.e., lateral force); and Kme =
experimentally determined elastic stiffness (i.e., initial slope of the
Δm versus V response). Corrected lateral drift due to the column
deformation only is then the sum of the theoretical elastic drift,
Δe, and the experimentally determined Δmp

Δ ¼ Δe þΔmp ð4Þ
where

Δe ¼
V
Ke

ð5Þ

where Ke = best estimate of the elastic lateral stiffness and is rep-
resented by the theoretical lateral stiffness of a beam-column with
ideal boundary conditions, i.e., rigid end connections. Substituting
Eqs. (3) and (5) into Eq. (4) yields the final formula used to deter-
mine the corrected story drifts

Δ ¼ Δe þΔmp ¼ V
Ke

þ
�
Δm − V

Kme

�
ð6Þ

Eq. (6) can be used to correct the test responses of beam-column
specimens; the resulting corrected story drifts can also be expressed
in term of story angles as Δ=L. To provide a theoretical basis for
the calculation of Ke for both the fixed-fixed and fixed-rotating
boundary condition cases, a literature review of classical beam-
column theories is discussed in the next section.

Beam-Column Theories: Members with Rigid End
Connections

In an elastic analysis of a beam-column problem, Bernoulli-Euler
theory assumes negligible shear deformation in calculating the
member deflection. Considering a two-node member with end
forces and corresponding degrees of freedom as shown in Fig. 9,

the Euler lateral force-displacement relationship of a member with
rigid end connections under a compressive axial force can be
expressed as follows (Timoshenko and Gere 1961):

V1 ¼
�

EIk3 sin kL
2ð1 − cos kLÞ − kL sin kL

�
Δ1 ð7Þ

where k ¼ ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
, where P is axial load magnitude (i.e., absolute

value of P); E = elastic modulus; and I = moment of inertia about
the bending axis. Accordingly, the lateral stiffness is

K11 ¼
EIk3 sin kL

2ð1 − cos kLÞ − kL sin kL
ð8Þ

where subscript 11 = position of the coefficient in the member
flexural stiffness matrix.

To consider the effect of shear deformation on the beam-column
lateral stiffness, Chugh (1977) transformed a flexibility matrix that
accounts for shear deformation to derive the following lateral
stiffness coefficient:

K 0
11 ¼

EIk3½sin kL − 2P
kLGAs

ð1 − cos kLÞ�
2ð1þ P

GAs
Þð1 − cos kLÞ − kL sin kL

ð9Þ

whereG = shear modulus; and As = effective shear area, accounting
for the fact that shear stress and shear strain are not uniformly
distributed over the member cross section. Defining

As ¼ ksA ð10Þ
where A = cross-sectional area, Cowper (1966) provided formulas
for determining ks, the Timoshenko shear coefficient, associated
with various cross-sectional shapes. For a wide-flange member bent
about its strong axis

ks ¼
10ð1þ νÞð1þ 3mÞ2

Aþ νBþ 30n2ðmþm2Þ þ 5νn2ð8mþ 9m2Þ ð11aÞ

where

A ¼ 12þ 72mþ 150m2 þ 90m3

B ¼ 11þ 66mþ 135m2 þ 90m3 ð11bÞ
where Poisson’s ratio ν ¼ 0.3 for steel; m ¼ 2bftf=h0tw; and
n ¼ bf=h0, where h0 is the distance between the flange centroids.
Alternatively, because shear stress distribution concentrates mostly
in the web of the wide-flange member subjected to strong-axis
bending, As is estimated as the web area of the shape in this study

As ¼ ðd − 2tfÞtw ð12Þ
where d = cross-sectional depth. Fig. 10 shows the comparable re-
sults obtained from Eqs. (10) and (12). When the effect of axial
force is not considered, Timoshenko beam theory can also reason-
ably approximate flexural stiffnesses (less than 6% difference from
Timoshenko beam-column stiffnesses) of the wide-flange beam-
column specimens tested in this program with strong-axis bending

Fig. 9. Two-node member with four degrees of freedom.
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because the second-order effect can be small for this loading
condition.

Considering properties and loading conditions of the deep
wide-flange beam-column specimens tested in this program, the
Euler beam-column theory [Eq. (8)] significantly overestimates the
member lateral stiffnesses compared with the values obtained from
the Timoshenko beam-column theory [Eq. (9)]. For instance, K̄11

andK 0
11 for the W30 × 173member (Specimen 13M) are 53.24 and

40.35 kN=mm, respectively, showing 31.9% overestimation for the
Euler equation. Therefore, to consider both the second-order effect
and the shear deformation effect, the Timoshenko beam-column
theory is used in this study to analyze elastic behavior of the deep
beam-column specimens and calculate Ke.

Data Correction for Beam-Column Tests with Fixed-
Fixed Boundary Conditions

Due to the symmetry of the fixed-fixed boundary conditions and
the test setup, it was observed that the yielding and buckling
patterns at both ends of the columns were very similar. Therefore,
the inflection point can reasonably be assumed to remain at the
midspan [Fig. 3(b)]. With this assumption [Fig. 3(a)], Ke for
calculating the corrected story drift in Eq. (6) is as follows:

Ke ¼ K 0
11 ð13Þ

An example correction of the lateral force-story drift response of
Specimen 13M is shown in Fig. 11. The last column in Table 1
reports that the connection flexibility can reduce the lateral stiffness
by 32.0% for the largest member (W30 × 261) tested. The stiffness
reduction is lower for shallower and lighter members (e.g., W14×
53 and W24 × 55).

Although the corrected story drift can be computed based on
the aforementioned procedure, the equivalent rotational flexibility
(or stiffness) of the member end connections is still unknown. Fur-
thermore, the preceding procedure, which assumes that the inflec-
tion point is at the midspan, is not applicable for other boundary
conditions. A procedure to overcome these issues is presented next.

Timoshenko Beam-Column Theory: Members with
Rotationally Flexible End Connections

Data correction for specimens with fixed-rotating boundary condi-
tions is not as simple compared with the fixed-fixed case because
flexibility of end moment connections affects both the member
stiffnesses and internal force distribution, i.e., inflection point

location. Therefore, theoretical behavior of Timoshenko beam-
columns with end rotational springs is presented next.

Many researchers have conducted studies of Timoshenko beam-
columns using different methods (continuous, lumped, matrix
analysis, finite-element method, and boundary element method,
among others). Cheng and Pantelides (1988a, b) derived static and
dynamic differential equations, stiffness matrix coefficients, and
fixed-end forces of Timoshenko beam-columns that are supported
on elastic media; the influence of a foundation parameter on the
buckling modes was also investigated. Chung et al. (1993) studied
dynamic behavior of Timoshenko beam-columns with rotationally
flexible ends and intermediate concentrated masses, linear
springs, and rotational springs; an exact solution method based on
Hamilton’s principle and the Laplace transform as well as the ap-
proximated Rayleigh-Ritz method were presented. Aristizabal-
Ochoa (2004) studied a free vibration problem of a Timoshenko
beam-column with generalized boundary conditions (i.e., with rota-
tional and linear springs as well as lumped masses at both ends). In
these studies, the main objectives of the dynamic analysis were to
derive expressions for determining natural frequencies and corre-
sponding mode shapes of the structural systems under considera-
tion. Despite numerous studies on Timoshenko beam-columns with
various boundary conditions, close-formed formulas for determin-
ing theoretical elastic flexural stiffnesses and internal force distri-
bution in Timoshenko beam-columns with rotationally flexible
ends are not available. To analytically quantify the effect of con-
nection flexibility on both the imposed lateral drift and end rotation
for specimens listed in Table 2, force-deformation relationships
of a Timoshenko beam-column with rotationally flexible ends
are derived as follows.

Assumptions

Fig. 12(a) shows an idealized configuration of the test specimens;
connection flexibility at both ends of the member is represented as
rotational springs with an equal stiffness Kθ:

Kθ ¼ β

�
EI
L

�
ð14Þ

where β = normalized rotational spring constant. Mechanical and
mathematical assumptions typically made in elastic beam-column
problems are applied in this derivation. Examples have been given
by Cheng and Pantelides (1988a) and Aristizabal-Ochoa (2004).
Fig. 12(b) shows the free-body diagram of a differential element

Fig. 10. Comparison of effective shear areas.
Fig. 11. Corrected versus measured hysteresis of Specimen 13M.
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located at x from End 1 of the member and the associated sign
conventions that are assumed for the internal shear and moment.

Governing Differential Equations

Applying shear and moment equilibriums to the differential
element gives

dV
dx

¼ 0 ð15Þ

dM
dx

þ VðxÞ þ P
dv
dx

¼ 0 ð16Þ

where v = lateral deflection; and α = flexural rotation. The
Timoshenko force-deformation relationships for prismatic and
homogeneous beam-columns can be expressed (Cheng and
Pantelides 1988a)

VðxÞ þ P
dv
dx

¼ GAs

�
dv
dx

− αðxÞ
�

ð17Þ

MðxÞ ¼ EI
dα
dx

ð18Þ

From Eqs. (15)–(18), the following differential equation is
derived:

EI

�
1 − P

GAs

�
d3α
dx3

þ P
dα
dx

¼ 0 ð19Þ

The general solution for Eq. (19) can be found

αðxÞ ¼ C1 sin
kxffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p þ C2 cos
kxffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p þ C3 ð20Þ

where μ ¼ P=GAs. Substituting Eqs. (17), (18), and (20)
into Eq. (16) and integrating once gives the lateral displacement
equation

vðxÞ ¼ 1

k
ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
�
−C1 cos

kxffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p þ C2 sin
kxffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
�

þ C3xþ C4 ð21Þ

Boundary Conditions

To establish the member stiffness matrix, Eqs. (22)–(25) express
four sets of boundary conditions corresponding to applications
of a unit lateral displacement or a unit rotation at the external Nodes
1 and 2, respectively

vð0Þ ¼ 1; vðLÞ ¼ 0;

βEI
L

½0 − αð0Þ� ¼ −EIdα
dx

����
x¼0

;
βEI
L

½0 − αðLÞ� ¼ EI
dα
dx

����
x¼L

ð22Þ

vð0Þ ¼ 0; vðLÞ ¼ 0;

βEI
L

½1 − αð0Þ� ¼ −EIdα
dx

����
x¼0

;
βEI
L

½0 − αðLÞ� ¼ EI
dα
dx

����
x¼L

ð23Þ

vð0Þ ¼ 0; vðLÞ ¼ 1;

βEI
L

½0 − αð0Þ� ¼ −EIdα
dx

����
x¼0

;
βEI
L

½0 − αðLÞ� ¼ EI
dα
dx

����
x¼L

ð24Þ

vð0Þ ¼ 0; vðLÞ ¼ 0;

βEI
L

½0 − αð0Þ� ¼ −EIdα
dx

����
x¼0

;
βEI
L

½1 − αðLÞ� ¼ EI
dα
dx

����
x¼L

ð25Þ

For instance, Eq. (23) expresses the relationship between the
spring moments and the member internal moments at ends when
a unit rotation is applied at Node 1 as shown in Fig. 13.

Internal Shear and Moment Distributions

The expressions for vð0Þ, vðLÞ, αð0Þ, and αðLÞ are determined us-
ing Eqs. (20) and (21). These expressions, when substituted into
each boundary condition set, result in four homogeneous equations
that can be solved to determine the coefficients C1, C2, C3, and C4

(Aristizabal-Ochoa 2004). Knowing these coefficients, Eqs. (20)
and (21) can be substituted in Eqs. (17) and (18) to derive formulas
of internal shear and moment distributions along the member.
Denoting vð0Þ, vðLÞ, αð0Þ, and αðLÞ asΔ1,Δ2, θ1, and θ2, respec-
tively (Fig. 9 gives the symbol convention), internal force formulas
corresponding to each boundary condition set are as follows:

Fig. 12. Beam-column member with end rotational springs: (a) overall configuration; and (b) free-body of a differential segment.

Fig. 13. Rotational spring moment and member internal moment
relationship.
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For Δ1 ¼ 1, θ1 ¼ 0, Δ2 ¼ 0, and θ2 ¼ 0, they are

VΔ1
ðxÞ ¼ −EIk3

Ψ
f2kLð

ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
Þβc − ½ðkLÞ2 − ð1 − μÞβ2�sg

MΔ1
ðxÞ ¼ − 2EIk2β

Ψ

�
kL cos

kL
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p þ ð
ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
Þβ sin

kL
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
�
sin

kðL − 2xÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p ð26Þ

For Δ1 ¼ 0, θ1 ¼ 1, Δ2 ¼ 0, and θ2 ¼ 0, they are

Vθ1ðxÞ ¼ −EIk2β
Ψ

½kLsþ ð
ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
Þβð1 − cÞ�

Mθ1ðxÞ ¼
EIkβ
Ψ

�
kLð

ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
Þβ cos

kðL − xÞffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p − ½ðkLÞ2 þ β� sin kðL − xÞffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p − β sin
kxffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
	

ð27Þ

For Δ1 ¼ 0, θ1 ¼ 0, Δ2 ¼ 1, and θ2 ¼ 0, it is

VΔ2
ðxÞ ¼ −VΔ1

ðxÞ
MΔ2

ðxÞ ¼ −MΔ1
ðxÞ ð28Þ

For Δ1 ¼ 0, θ1 ¼ 0, Δ2 ¼ 0, and θ2 ¼ 1, they are

Vθ2ðxÞ ¼ Vθ1ðxÞ

Mθ2ðxÞ ¼ −EIkβ
Ψ

�
kLð

ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
Þβ cos

kxffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p

−
�
ðkLÞ2 þ β

�
sin

kxffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p − β sin
kðL − xÞffiffiffiffiffiffiffiffiffiffiffi

1 − μ
p

	
ð29Þ

where c ¼ cosðkL= ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p Þ; s ¼ sinðkL= ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p Þ; and

Ψ ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
Þβ2

�
1 −

�
1þ ðkLÞ2

β

�
c

	

− kL½ð1 − μÞβ2 − 2β − ðkLÞ2�s ð30Þ

Stiffness Matrix

Setting x to either 0 or L, VΔ1
ð0Þ, MΔ1

ð0Þ, VΔ1
ðLÞ, and MΔ1

ðLÞ,
can be determined using Eq. (26) to establish stiffness coefficients
in the first column of the Timoshenko beam-column stiffness
matrix, ½K�.

8>>>>><
>>>>>:

V1

M1

V2

M2

9>>>>>=
>>>>>;

¼

2
666664

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

3
777775

8>>>>><
>>>>>:

Δ1

θ1

Δ2

θ2

9>>>>>=
>>>>>;

ð31Þ

Similarly, the same process can be carried out using Eqs. (27)–
(29) to establish the remaining coefficients in the stiffness matrix.
The stiffness coefficients are

K11 ¼
EIk3

Ψ
f2kLð

ffiffiffiffiffiffiffiffiffiffiffi
1− μ

p
Þβc− ½ðkLÞ2 − ð1− μÞβ2�sg

K12 ¼
EIk2β
Ψ

½kLsþ ð
ffiffiffiffiffiffiffiffiffiffiffi
1− μ

p
Þβð1− cÞ�

K22 ¼
EIkβ
Ψ

f½ðkLÞ2 þ β�s− kLð
ffiffiffiffiffiffiffiffiffiffiffi
1− μ

p
Þβcg

K24 ¼
EIkβ2

Ψ
½kLð

ffiffiffiffiffiffiffiffiffiffiffi
1− μ

p
Þ− s�

−K13 ¼ −K31 ¼ K33 ¼ K11

−K32 ¼ −K23 ¼ −K43 ¼ −K34 ¼ K41 ¼ K14 ¼ K21 ¼ K12

K44 ¼ K22

K42 ¼ K24 ð32Þ

With these stiffness coefficient expressions, flexibility of the end
moment connections can be quantified in term of an equivalent end
rotational spring stiffness. For fixed-fixed specimens, for instance,
the relationship between the column shear and the measured lateral
drift in the elastic range can be expressed as follows:

V ¼ K11Δm ð33Þ
Eq. (33) can be calibrated with the elastic portion of the

measured lateral force-story drift test responses to determine β
and associated Kθ [Eq. (14)]; the calculated values of β for the
fixed-fixed boundary condition test specimens are listed in Table 1.
It is difficult to achieve a rigid connection, i.e., β → ∞, in real
steel construction. Commentary of AISC 360 (AISC 2016c) states
that it is acceptable to consider a connection to be fully restrained,
i.e., able to maintain the angle between two members, when
β ≥ 20. A connection is considered simple and can be modeled
as a hinge, i.e., it rotates without developing moment, when
β ≤ 2. Considering β values listed in Table 1, the test end moment
connections behaved in a more flexible manner when a low level of
axial compression was applied to the specimen: β values associated
with low-axial load specimens were lower than those associated
with medium- and high-axial-load specimens. In the next section,
further application of the derived Timoshenko beam-column formu-
las to correct test data for fixed-rotating specimens is discussed.

Data Correction for Beam-Column Tests with
Fixed-Rotating Boundary Conditions

Because the end moments at the fixed and rotating ends were not
the same in magnitude, connection rotation at each column end also

© ASCE 04019230-9 J. Struct. Eng.
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differed in magnitude. Consequently, in addition to the applied end
rotation at the moving end, connection flexibility also influenced
the location of inflection point in the specimens. The following
steps determine Ke for fixed-rotating specimens, which is needed
in Eq. (6) to remove the effect of connection flexibility from the
lateral drift responses: (1) determine the equivalent end rotational
spring stiffness and locate the inflection point in the specimens;
(2) based on the determined inflection point location, calculate
an equivalent moving-end rotation assuming both column-end con-
nections are rigid; and (3) calculate Ke based on the equivalent
moving-end rotation determined in Step 2.

Step 1: Determine the End Rotational Spring Stiffness
and Inflection Point Location

By idealizing the connection flexibility at both ends of the speci-
mens as rotational springs with an identical equivalent stiffness,
βðEI=LÞ, Eq. (34) expresses the theoretical elastic lateral stiffness
relationship of a fixed-rotating beam-column with rotationally
flexible ends

V ¼ ðK11 − ξm
L

K12ÞΔm ð34Þ

This equation is derived by setting Δ1 ¼ Δm, θ1 ¼ −θm ¼
−ξmðΔm=LÞ, and Δ2 ¼ θ2 ¼ 0 in the first equation in Eq. (31).
Eq. (34) is then calibrated with the measured lateral force-story drift
elastic response to back-calculate β. Once β is determined, internal
moment along the member can be expressed using the superposi-
tion principle

MðxÞ ¼ MΔ1
ðxÞΔm −Mθ1ðxÞθm ¼ ½MΔ1

ðxÞ − ξm
L

Mθ1ðxÞ�Δm

ð35Þ

where x is measured from the moving end. Setting Eq. (35) to
zero and solving for x give the inflection point location, xIP, in
the specimen. Table 2 gives the calculated xIP values for the three
test specimens.

Step 2: Determine an Equivalent Moving-End Rotation

To eliminate the effect of rigid-body rotation caused by connection
flexibility that contributed to both the measured lateral drift (Δm)
and end rotation (θm) as shown in Fig. 4(b), the specimen is as-
sumed to have ideal fixed-rotating boundary conditions, i.e., rigid
end connections as shown in Fig. 4(a), and sustain an equivalent
moving-end rotation of

θ ¼ ξ

�
Δ
L

�
ð36Þ

Essentially, if the specimen sustained θ andΔ at the moving end
with ideal boundary conditions, it would have the same inflection
point location as if it sustained θm and Δm with flexible end
connections; both the ideal and real configurations are equivalent.
The equivalent moving-end rotation, θ, is determined as follows.

Similar to Eq. (35), Eq. (37) expresses the theoretical internal
moment along a beam-column with ideal fixed-rotating boundary
conditions

M 0ðxÞ ¼ ½M 0
Δ1
ðxÞ − ξ

L
M 0

θ1
ðxÞ�Δ ð37Þ

where

M 0
Δ1
ðxÞ ¼

−2EIk2ð ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p Þ sin kL
2

ffiffiffiffiffiffiffi
1−μp sin kðL−2xÞ

2
ffiffiffiffiffiffiffi
1−μp

2
ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p ð1 − cÞ − kLð1 − μÞs ð38Þ

M 0
θ1
ðxÞ ¼

EIkfkLð ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p Þ cos kðL−xÞffiffiffiffiffiffiffi
1−μp − sin kðL−xÞffiffiffiffiffiffiffi

1−μp − sin kxffiffiffiffiffiffiffi
1−μp g

2
ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p ð1 − cÞ − kLð1 − μÞs
ð39Þ

Eqs. (38) and (39) are obtained by setting β → ∞ in Eqs. (26)
and (27) for MΔ1

ðxÞ and Mθ1ðxÞ.
Substituting xIP determined in Step 1 into Eq. (37) gives

M 0ðxIPÞ ¼ ½M 0
Δ1
ðxIPÞ − ξ

L
M 0

θ1
ðxIPÞ�Δ ð40Þ

Accordingly, ξ can be calculated such thatM 0ðxIPÞ ¼ 0 to make
the inflection point location of the ideal configuration identical to
that of the actual configuration. The value of θ is then calculated
per Eq. (36). Table 2 gives the calculated ξ values.

Step 3: Calculate Ke

Eq. (41) expresses the theoretical lateral force-story drift relation-
ship of the specimens with equivalent ideal fixed-rotating boundary
conditions

V ¼ ðK 0
11 − ξ

L
K 0

12ÞΔ ð41Þ

Thus, Ke based on the Timoshenko theory considering both
shearing and second-order effects becomes

Ke ¼ K 0
11 − ξ

L
K 0

12 ð42Þ

where K 0
11 is calculated as in Eq. (9) and (Chugh 1977)

K 0
12 ¼

EIk2ð1 − cos kLÞ
2ð1þ P

GAs
Þð1 − cos kLÞ − kL sin kL

ð43Þ

The calculated Ke is then used in Eq. (6) to compute the
corrected drift.

An example correction of the lateral force-story drift response of
Specimen 11H-BC is shown in Fig. 14. Calculated values of Kme
and Ke are 9.75 and 11.27 kN=mm, respectively, showing that the
connection flexibility reduces the lateral stiffness by 13.4%. Table 2

Fig. 14. Corrected versus measured hysteresis of Specimen 11H-BC.
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summarizes key variables associated with this drift-correction pro-
cedure for each fixed-rotating specimen.

Summary and Conclusions

In steel wide-flange beam-column cyclic testing, the measured
responses are sensitive to flexibility of the fully restrained moment
connections that fix the specimen ends. Although it is feasible
to design end moment connections to reach near full fixity in test-
ing of small-size specimens, the task becomes difficult when
testing large-size members at full-scale level. Correspondingly,
the unavoidable connection rotations become another variable
that influences the test responses, hindering investigation of param-
eters of interest in the test program. Utilizing theoretical elastic
Timoshenko beam-column force-deformation relationships, a
data-reduction procedure has been proposed to remove the effect
of connection flexibility from the measured beam-column responses.
Stiffness formulas available in literature can be used to correct the
test data for beam-column specimens tested with the fixed-fixed
boundary conditions. Built upon existing theories, further derivations
of Timoshenko beam-column force-deformation relationships have
been presented in this paper to correct test data for beam-column
specimens tested with fixed-rotating boundary conditions.

Acknowledgments

Funding for this research was provided by the NEHRP Consultants
Joint Venture Earthquake, Structural, and Engineering Research
for the National Institute of Standards and Technology (NIST).
American Institute of Steel Construction and Herrick Corporation
donated the test specimens. Mr. J. O. Malley from Degenkolb
Engineers chaired the Project Technical Committee, and Ms. A.
Hortacsu from Applied Technology Council served as the project
manager. The authors would like to acknowledge Dr. J. L. Harris III
from NIST for reviewing this paper.

References

AISC. 2016a. Prequalified connections for special and intermediate steel
moment frames for seismic applications. ANSI/AISC 358. Chicago:
AISC.

AISC. 2016b. Seismic provisions for structural steel building. ANSI/AISC
341. Chicago: AISC.

AISC. 2016c. Specification for structural steel buildings. ANSI/AISC
360. Chicago: AISC.

Aristizabal-Ochoa, J. D. 2004. “Timoshenko beam-column with general-
ized end conditions and nonclassical modes of vibration of shear
beams.” J. Eng. Mech. 130 (10): 1151–1159. https://doi.org/10.1061
/(ASCE)0733-9399(2004)130:10(1151).

ASCE. 2016. Minimum design loads and associated criteria for buildings
and other structures. ASCE/SEI 7. Reston, VA: ASCE.

ASTM. 2017. Standard specification for quenched and tempered alloy
steel bolts, studs, and other externally threaded fasteners. ASTM
A354. West Conshohocken, PA: ASTM.

ASTM. 2018. Standard specification for high-strength low-alloy
columbium-vanadium structural steel. ASTM A572. West
Conshohocken, PA: ASTM.

Chansuk, P., G. Ozkula, and C.-M. Uang. 2018. Seismic behavior and de-
sign of deep, slender wide-flange structural steel beam-columns:
Phase 2 testing. Rep. No. SSRP-18/02. San Diego: Univ. of California.

Cheng, F. Y., and C. P. Pantelides. 1988a. “Dynamic Timoshenko beam-
columns on elastic media.” J. Struct. Eng. 114 (7): 1524–1550. https://
doi.org/10.1061/(ASCE)0733-9445(1988)114:7(1524).

Cheng, F. Y., and C. P. Pantelides. 1988b. “Static Timoshenko beam-
columns on elastic media.” J. Struct. Eng. 114 (5): 1152–1172.
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:5(1152).

Chugh, A. K. 1977. “Stiffness matrix for a beam element including trans-
verse shear and axial force effects.” Int. J. Numer. Methods Eng.
11 (11): 1681–1697. https://doi.org/10.1002/nme.1620111105.

Chung, J. H., W. H. Joo, and K. C. Kim. 1993. “Vibration and dynamic
sensitivity analysis of a Timoshenko beam-column with elastically
restrained ends and intermediate constraints.” J. Sound Vib. 167 (2):
209–221. https://doi.org/10.1006/jsvi.1993.1331.

Cowper, G. R. 1966. “The shear coefficient in Timoshenko’s beam theory.”
J. Appl. Mech. 33 (2): 335–340. https://doi.org/10.1115/1.3625046.

Harris, J. L., and M. S. Speicher. 2015. Assessment of first generation
performance-based seismic design methods for new steel buildings:
volume 1: Special moment frames. NIST TN 1863-1. Gaithersburg,
MD: NIST.

Newell, J. D., and C.-M. Uang. 2008. “Cyclic behavior of steel wide-flange
columns subjected to large drift.” J. Struct. Eng. 134 (8): 1334–1342.
https://doi.org/10.1061/(ASCE)0733-9445(2008)134:8(1334).

NIST. 2011. Research plan for the study of seismic behavior and design of
deep, slender, wide-flange structural steel-beam-column members.
NIST-GCR-11-917-13. Gaithersburg, MD: NIST.

Ozkula, G., J. Harris, and C.-M. Uang. 2017. “Classifying cyclic buckling
modes of steel wide-flange columns under cyclic loading.” In Proc.,
Structures Congress. Reston, VA: ASCE.

Ozkula, G., and C.-M. Uang. 2015. Seismic behavior and design of deep,
slender wide-flange structural steel beam-columns: Phase 1 testing.
Rep. No. SSRP-15/06. San Diego: Univ. of California.

Ozkula, G., and C.-M. Uang. 2017. “Observations from cyclic tests on
deep, wide-flange beam-columns.” Eng. J. 54 (1): 45–59.

Timoshenko, S. P., and J. M. Gere. 1961. Theory of elastic stability. 2nd ed.
New York: McGraw-Hill.

© ASCE 04019230-11 J. Struct. Eng.

 J. Struct. Eng., 2020, 146(3): 04019230 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

"U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

" 
on

 1
2/

31
/1

9.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1151)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1151)
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:7(1524)
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:7(1524)
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:5(1152)
https://doi.org/10.1002/nme.1620111105
https://doi.org/10.1006/jsvi.1993.1331
https://doi.org/10.1115/1.3625046
https://doi.org/10.1061/(ASCE)0733-9445(2008)134:8(1334)

